1,550 research outputs found

    Factor structure of the Gotland Scale of male depression in two samples of men with prostate cancer:Implications for treating male depression

    Get PDF
    Up to a quarter of all prostate cancer (PCa) patients suffer from clinically significant depression but treatments are inconsistent and short-lived in their efficacy. One possible reason could be that 'male depression' is not adequately diagnosed by the criteria for major depressive disorder (MDD) used in many clinical settings.In response to this limitation, the Gotland Scale of Male Depression (GSMD) was developed to identify the extra symptoms of MDD in men. Although the factor structure of the GSMD has been reported in non-PCa samples, it has not been determined for this group of men. Two samples of PCa patients were recruited, 191 from Australia and 138 from the United Kingdom and all patients received the GSMD individually, plus a background questionnaire. Two-factor solutions were identified for each of the two samples. The Australian sample was characterized by changes in emotional and somatic function, followed by depressed mood. The U.K. sample exhibited the same two-factor solution but in reverse order of weighting. Targeted treatments for depression in PCa patients may benefit from identification of the loadings that individual patients have on these two GSMD factors so that specific clinical profiles and treatment needs may be based on this information about their depression

    Distributed Protocols for Signal-Scale Cooperation

    Get PDF
    Signal-scale cooperation is a class of techniques designed to harness the same gains offered by multi-antenna communication in scenarios where devices are too small to contain an array of antennas. While the potential improvements in reliability at the physical layer are well known, three key challenges must be addressed to harness these gains at the medium access layer: (a) the distributed synchronization and coordination of devices to enable cooperative behavior, (b) the conservation of energy for devices cooperating to help others, and (c) the management of increased inter-device interference caused by multiple spatially separate transmissions in a cooperative network. In this thesis, we offer three contributions that respectively answer the above three challenges. First, we present two novel cooperative medium access control protocols: Distributed On-demand Cooperation (DOC) and Power-controlled Distributed On-demand Cooperation (PDOC). These protocols utilize negative acknowledgments to synchronize and trigger cooperative relay transmissions in a completely distributed manner. Furthermore, they avoid cooperative transmissions that would likely be unhelpful to the source of the traffic. Second, we present an energy conservation algorithm known as Distributed Energy-Conserving Cooperation (DECC). DECC allows devices to alter their cooperative behavior based on measured changes to their own energy efficiency. With DECC, devices become self-aware of the impact of signal-scale cooperation -- they explicitly monitor their own performance and scale the degree to which they cooperate with others accordingly. Third and finally, we present a series of protocols to combat the challenge of inter-device interference. Whereas energy efficiency can be addressed by a self-aware device monitoring its own performance, inter-device interference requires devices with network awareness that understand the impact of their behavior on the devices around them. We investigate and quantify the impact of incomplete network awareness by proposing a modeling approximation to derive relaying policy behaviors. We then map these policies to protocols for wireless channels

    M–M Bond-Stretching Energy Landscapes for M_2(dimen)_(4)^(2+) (M = Rh, Ir; dimen = 1,8-Diisocyanomenthane) Complexes

    Get PDF
    Isomers of Ir_2(dimen)_(4)^(2+) (dimen = 1,8-diisocyanomenthane) exhibit different Ir–Ir bond distances in a 2:1 MTHF/EtCN solution (MTHF = 2-methyltetrahydrofuran). Variable-temperature absorption data suggest that the isomer with the shorter Ir–Ir distance is favored at room temperature [K = ~8; ΔH° = −0.8 kcal/mol; ΔS° = 1.44 cal mol^(–1) K^(–1)]. We report calculations that shed light on M_2(dimen)_(4)^(2+) (M = Rh, Ir) structural differences: (1) metal–metal interaction favors short distances; (2) ligand deformational-strain energy favors long distances; (3) out-of-plane (A_(2u)) distortion promotes twisting of the ligand backbone at short metal–metal separations. Calculated potential-energy surfaces reveal a double minimum for Ir_2(dimen)_(4)^(2+) (4.1 Å Ir–Ir with 0° twist angle and ~3.6 Å Ir–Ir with ±12° twist angle) but not for the rhodium analogue (4.5 Å Rh–Rh with no twisting). Because both the ligand strain and A_(2u) distortional energy are virtually identical for the two complexes, the strength of the metal–metal interaction is the determining factor. On the basis of the magnitude of this interaction, we obtain the following results: (1) a single-minimum (along the Ir–Ir coordinate), harmonic potential-energy surface for the triplet electronic excited state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 2.87 Å; F_(Ir–Ir) = 0.99 mdyn Å^(–1)); (2) a single-minimum, anharmonic surface for the ground state of Rh_2(dimen)_(4)^(2+) (R_(e,Rh–Rh) = 3.23 Å; F_(Rh–Rh) = 0.09 mdyn Å^(–1)); (3) a double-minimum (along the Ir–Ir coordinate) surface for the ground state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 3.23 Å; F_(Ir–Ir) = 0.16 mdyn Å^(–1))

    High Spatial Resolution Observations of Two Young Protostars in the R Corona Australis Region

    Full text link
    We present multi-wavelength, high spatial resolution imaging of the IRS 7 region in the R Corona Australis molecular cloud. Our observations include 1.1 mm continuum and HCO^+ J = 3→23 \to 2 images from the SMA, ^{12}CO J = 3→23 \to 2 outflow maps from the DesertStar heterodyne array receiver on the HHT, 450 μ\mum and 850 μ\mum continuum images from SCUBA, and archival Spitzer IRAC and MIPS 24 \micron images. The accurate astrometry of the IRAC images allow us to identify IRS 7 with the cm source VLA 10W (IRS 7A) and the X-ray source X_W. The SMA 1.1 mm image reveals two compact continuum sources which are also distinguishable at 450 μ\mum. SMA 1 coincides with X-ray source CXOU J190156.4-365728 and VLA cm source 10E (IRS 7B) and is seen in the IRAC and MIPS images. SMA 2 has no infrared counterpart but coincides with cm source VLA 9. Spectral energy distributions constructed from SMA, SCUBA and Spitzer data yield bolometric temperatures of 83 K for SMA 1 and ≤\leq70 K for SMA 2. These temperatures along with the submillimeter to total luminosity ratios indicate that SMA 2 is a Class 0 protostar, while SMA 1 is a Class 0/Class I transitional object (L=17±617\pm6 \Lsun). The ^{12}CO J = 3→23 \to 2 outflow map shows one major and possibly several smaller outflows centered on the IRS 7 region, with masses and energetics consistent with previous work. We identify the Class 0 source SMA 2/VLA 9 as the main driver of this outflow. The complex and clumpy spatial and velocity distribution of the HCO^+ J = 3→23 \to 2 emission is not consistent with either bulk rotation, or any known molecular outflow activity.Comment: 31 pages, 8 figures, Accepted to Ap

    Noninvasive Sphenopalatine Ganglion Block for Acute Headache in the Emergency Department: A Randomized Placebo-Controlled Trial

    Get PDF
    Study objective We seek to test the efficacy of noninvasive sphenopalatine ganglion block for the treatment of acute anterior headache in the emergency department (ED) using a novel noninvasive delivery device. Methods We conducted a randomized, double-blind, placebo-controlled trial evaluating bupivacaine anesthesia of the sphenopalatine ganglion for acute anterior or global-based headache. This study was completed in 2 large academic EDs. Bupivacaine or normal saline solution was delivered intranasally (0.3 mL per side) with the Tx360 device. Pain and nausea were measured at 0, 5, and 15 minutes by a 100-mm visual analog scale. The primary endpoint was a 50% reduction in pain at 15 minutes. Telephone follow-up assessed 24-hour pain and nausea through a 0- to 10-point verbal scale and adverse effects. Results The median reported baseline pain in the bupivacaine group was 80 mm (IQR 66 mm - 93 mm) and 78.5 mm (IQR 64 mm to 91.75 mm) in the normal saline solution group. A 50% reduction in pain was achieved in 48.8% of the bupivacaine group (20/41 patients) versus 41.3% in the normal saline solution group (19/46 patients), for an absolute risk difference of 7.5% (95% confidence interval [CI] –13% to 27.1%). As a secondary outcome, at 24 hours, more patients in the bupivacaine group were headache free (24.7% difference; 95% CI 2.6% to 43.6%) and more were nausea free (16.9% difference; 95% CI 0.8% to 32.5%). Conclusion For patients with acute anterior headache, sphenopalatine ganglion block with the Tx360 device with bupivacaine did not result in a significant increase in the proportion of patients achieving a greater than or equal to 50% reduction in headache severity at 15 minutes compared with saline solution applied in the same manner

    Bod1, a novel kinetochore protein required for chromosome biorientation

    Get PDF
    We have combined the proteomic analysis of Xenopus laevis in vitro–assembled chromosomes with RNA interference and live cell imaging in HeLa cells to identify novel factors required for proper chromosome segregation. The first of these is Bod1, a protein conserved throughout metazoans that associates with a large macromolecular complex and localizes with kinetochores and spindle poles during mitosis. Small interfering RNA depletion of Bod1 in HeLa cells produces elongated mitotic spindles with severe biorientation defects. Bod1-depleted cells form syntelic attachments that can oscillate and generate enough force to separate sister kinetochores, suggesting that microtubule–kinetochore interactions were intact. Releasing Bod1-depleted cells from a monastrol block increases the frequency of syntelic attachments and the number of cells displaying biorientation defects. Bod1 depletion does not affect the activity or localization of Aurora B but does cause mislocalization of the microtubule depolymerase mitotic centromere- associated kinesin and prevents its efficient phosphorylation by Aurora B. Therefore, Bod1 is a novel kinetochore protein that is required for the detection or resolution of syntelic attachments in mitotic spindles

    Seroprevalence of SARS-CoV-2 Antibodies Among Healthcare Workers With Differing Levels of COVID-19 Patient Exposure

    Get PDF
    Healthcare employees were tested for antibodies against SARS-CoV-2. Among 734 employees, the prevalence of SARS-CoV-2 antibodies was 1.6%. Employees with heavy COVID-19 exposure had similar antibody prevalence as those with limited or no exposure. Guidelines for PPE use seem effective for preventing COVID-19 infection in healthcare workers.Antibody testing was paid for by Indiana University Health,as part of an internal quality assessment initiative

    Detection of Potential Transit Signals in Sixteen Quarters of Kepler Mission Data

    Full text link
    We present the results of a search for potential transit signals in four years of photometry data acquired by the Kepler Mission. The targets of the search include 111,800 stars which were observed for the entire interval and 85,522 stars which were observed for a subset of the interval. We found that 9,743 targets contained at least one signal consistent with the signature of a transiting or eclipsing object, where the criteria for detection are periodicity of the detected transits, adequate signal-to-noise ratio, and acceptance by a number of tests which reject false positive detections. When targets that had produced a signal were searched repeatedly, an additional 6,542 signals were detected on 3,223 target stars, for a total of 16,285 potential detections. Comparison of the set of detected signals with a set of known and vetted transit events in the Kepler field of view shows that the recovery rate for these signals is 96.9%. The ensemble properties of the detected signals are reviewed.Comment: Accepted by ApJ Supplemen

    CO(1-0) in z ≳ 4 Quasar Host Galaxies: No Evidence for Extended Molecular Gas Reservoirs

    Get PDF
    We present ^(12)CO(J = 1 → 0) observations of the high-redshift quasi-stellar objects (QSOs) BR 1202-0725 (z = 4.69), PSS J2322+1944 (z = 4.12), and APM 08279+5255 (z = 3.91) using the NRAO Green Bank Telescope (GBT) and the MPIfR Effelsberg 100 m telescope. We detect, for the first time, the CO ground-level transition in BR 1202-0725. For PSS J2322+1944 and APM 08279+5255, our observations result in line fluxes that are consistent with previous NRAO Very Large Array (VLA) observations, but they reveal the full line profiles. We report a typical lensing-corrected velocity-integrated intrinsic ^(12)CO(J = 1 → 0) line luminosity of L'_(CO) = 5 × 10^(10) K km s^(-1) pc^2 and a typical total H_2 mass of M(H_2) = 4 × 10^(10) M_☉ for the sources in our sample. The CO/FIR luminosity ratios of these high-z sources follow the same trend as seen for low-z galaxies, leading to a combined solution of log L_(FIR) = (1.39 ± 0.05) log L_(CO) - 1.76. It has previously been suggested that the molecular gas reservoirs in some quasar host galaxies may exhibit luminous, extended ^(12)CO(J = 1 → 0) components that are not observed in the higher J CO transitions. Using the line profiles and the total intensities of our observations and large velocity gradient (LVG) models based on previous results for higher J CO transitions, we derive that emission from all CO transitions is described well by a single gas component in which all molecular gas is concentrated in a compact nuclear region. Thus, our observations and models show no indication of a luminous extended, low surface brightness molecular gas component in any of the high-redshift QSOs in our sample. If such extended components exist, their contribution to the overall luminosity is limited to at most 30%
    • …
    corecore